Bent Hamilton Cy les in d-Dimensional Grid Graphs

نویسندگان

  • F. Ruskey
  • Joe Sawada
چکیده

F. Ruskey Joe Sawada y May 15, 2002 Abstra t A bent Hamilton y le in a grid graph is one in whi h ea h edge in a su essive pair of edges lies in a di erent dimension. We show that the d-dimensional grid graph has a bent Hamilton y le if some dimension is even and d 3, and does not have a bent Hamilton y le if all dimensions are odd. In the latter ase, we determine the onditions for when a bent Hamilton path exists. For the d-dimensional toroidal grid graph (i.e., the graph produ t of d y les), we show that there exists a bent Hamilton y le when all dimensions are odd and d 3. We also show that if d = 2, then there exists a bent Hamilton y le if and only if both dimensions are even.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bent Hamilton Cycles in d-Dimensional Grid Graphs

A bent Hamilton cycle in a grid graph is one in which each edge in a successive pair of edges lies in a different dimension. We show that the d-dimensional grid graph has a bent Hamilton cycle if some dimension is even and d ≥ 3, and does not have a bent Hamilton cycle if all dimensions are odd. In the latter case, we determine the conditions for when a bent Hamilton path exists. For the d-dime...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

Hamilton Circuits in Hexagonal Grid Graphs

We look at a variant of the Hamilton circuit problem, where the input is restricted to hexagonal grid graphs. A hexagonal grid graph has a vertex set that is a subset of the grid points of a regular hexagonal tiling of the plane and edges corresponding to hexagon sides. We show that Hamilton circuit in hexagonal grid graphs is NP-complete.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001